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The maintenance of turbulent shear stress 
in a mixing layer 

By IAN S .  F. JONES 
Boeing Scientific Research Laboratories? 

(Received 31 May 1974 and in revised form 31 October 1975) 

Wavenumber frequency spectra have been measured in a two-dimensional 
incompressible mixing layer, using linearized hot-wire anemometers. Spectra 
of two dimensions (frequency and wavenumber) have been measured for lateral 
and longitudinal turbulent velocities, and used to construct three-dimensional 
spectra. The validity of the separation assumption used to construct these spec- 
tra was tested. Spectra of the velocity product responsible for the mean shear 
stress and the lateral gradient of this spectrum have been determined, as has a 
structure constant for the lateral velocity fluctuations that Phillips (1967) 
suggested is relevant to the maintenance of ihe shear stress gradient. Phillips’ 
(1967) stress model fails the tests proposed in this study. 

1. Introduction 
The turbulent shear flows evolve as a result of the erosion of the mean velocity 

gradient by the turbulent shear stresses, and these stresses also interact with the 
mean velocity to provide the turbulent energy necessary to sustain the evolution. 
The earliest models linking the shear stress and the mean velocity gradient by 
mixing length or eddy diffusivity concepts have proved too simple to be generally 
applicable. Alternative models relating the shear stress to the other terms in the 
turbulent energy balance equation require a number of parameters that appear 
to vary widely from situation to situation. More recently, Phillips (1967) ad- 
vanced the attractive proposition that the shear stress gradient is related to the 
second derivative of the mean velocity and structure constants of the lateral 
velocity fluctuations. It is this model that is examined in this paper. 

The shear stress model advanced by Phillips is developed from the work of 
Miles (1 957), who examined water wave generation resulting from wave-induced 
wind stress. For an inviscid laminar flow, the induced velocity fluctuations due 
to flow over surface waves bring about an increase in shear stress in the atmo- 
sphere at  a critical layer where the convection velocity of the disturbance matches 
the mean velocity. When the air flow is turbulent rather than laminar, a wave- 
induced stress can be generated outside the critical layer as a result of the induced 
fluctuations interacting with the atmospheric turbulence. 

For turbulent shear flows in general, Phillips (1967) considered perturbations 
that are Fourier components of the turbulent field, rather than induced by 
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surface waves. By arguing that the direct interaction of the lateral velocity 
fluctuations with the mean flow at the matched layer dominates the maintenance 
of shear gradient, Phillips’ model leads to the convenient expression for shear 
stress gradient 

in terms of /I, a structure function, and @22,  a time scale of the lateral velocity 
fluctuations u,. 

The above gradient of shear stress is brought about by only those Fourier 
components of the lateral velocity fluctuations that travel at the local mean velo- 
city. These components induce correlated vorticity fluctuations, so that they 
can be shown to lead to an increment in shear stress. For lateral velocity fluctua- 
tions travelling at other than the local mean, the induced vorticity fluctuations, 
Phillips argues, are nearly in quadrature with the lateral fluctuations, so there is 
negligible increment to the shear stress as a result of such components. In  a 
non-turbulent two-dimensional flow, the vorticity and lateral fluctuations 
would be exactly in quadrature away from the matched layer; but, when there 
are turbulent stresses in the flow, Fourier components travelling faster or slower 
than the mean velocity can lead to gradients in shear stress. 

The question this paper addresses is whether the interaction of the lateral 
velocity components with the mean flow accounts for most of the shear stress 
gradient, or whether the lateral velocity fluctuations interact strongly with the 
other turbulent fluctuations present in the flow. This can be tested in a mixing 
layer by measuring the convection velocity of the Fourier components of the 
shear stress, and comparing the velocity of the most energetic components with 
the local mean. 

The interaction of the Fourier components of the lateral velocity with the 
other turbulent quantities can be examined by Fourier transforming the momen- 
tum equation and forming a product with the lateral velocity components. Such 
an exercise could show the role of the nonlinear terms in the maintenance of 
shear stress, if they were evaluated from spectral measurements. Measurement of 
all the components involved was beyond our patience, but some simple deductions 
can be made from the spectral components that were measured in the mixing 
layer. 

2. Apparatus and co-ordinates 
The two-dimensional mixing layer was generated in the apparatus used by 

Wygnanski & Fiedler (1970), where the flow (sometimes called a half-jet) was 
allowed to entrain ambient air along one of its boundaries, the other three being 
solid surfaces as shown in figure I. A trip wire, I cm upstream of the nozzle exit, 
ensured a turbulent boundary layer on the nozzle wall. 

The longitudinal velocities were sensed with single hot-wire probes and the 
lateral velocities with X-wires. Four DISA 55D01 anemometers and 55D10 
linearizers were required to measure corre1at)ions of lateral velocities. The sum 
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FIGURE 1. Schematic of two-dimensional mixing layer and two hot-wire probes. 

and difference of X-wire outputs were produeed with the aid of Phjlbrick com- 
ponents. 

Fourier transformations of the fluctuating quantities were produced on an 
IBM 360-44 computer. The signals from two measuring stations were digitized 
with an 11 bit word length by an IBM 1827 analog-to-digital converter at  the 
rate of 3500 samples per second per channel. A ‘fast Fourier transform of 
these signals in bands 3.5 c/s wide gave a description of the energy above 1.7 CIS 
with a folding frequency of 1700 c/s. Because the two channels were sampled 
sequentially, the time delay between signals was equivalent to a phase shift. This 
delay was 56,us, giving rise to phase shift of 0.06rad at the highest frequency 
used (about 0.1 of the folding frequency, to ensure no aliasing problem). A satis- 
factory statistical certainty was obtained with 150-200 ensembles. 

The spacing between the measuring stations was varied, to produce filtered 
correlations, which were transformed for each frequency band to produce a 
wavenumber frequency spectrum. The smallest spacing was set by problems of 
probe interference; and this was most severe in measurements using an X-wire 
upstream of another wire. At the smallest sepa.ration used, the maximum varia- 
tion in spectral bands due to the interference to the flow from the upstream 
wire was about 5 yo. At the largest separation, the distance between the probes 
was 60 cm. The lowest-frequency band computed was 17 CIS, which gives a per- 
centage bandwidth (in frequency) of 2 0.1 of the centre frequency. Higher fre- 
quencies had a lower percentage bandwidth to ensure that the error in computing 
the correlation, as a result of finite bandwidth, was less than 10% for 1-25 
cycles (in space) of the filtered correlation. 

The co-ordinate system yi adopted had y1 in the downstream direction, and yz 
in the lateral direction containing the variation of mean velocity. The lateral 
co-ordinate was made non-dimensional by yl, where y1 was zero at the virtual 
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origin of the mixing layer, 1-9 cm upstream of the nozzle lip (from Wygnanski & 
Fiedler 1970). This variable 7 (i.e. y2/y1) had its origin at the point where the mean 
velocity was half the exit velocity U,. Fluctuations about the mean velocity I& 
are written as u,. 

3. Definition of spectra 

Fourier frequency modes Z,(o) dw, defined by 
The velocities u4(t) sensed by the hot-wire probes were transformed into 

Because the transformation was digital, the estimates of Z,(w) are available only 
at discrete values of 0; but in this discussion we shall treat Z1(w) as if it were 
continuous in w .  

Transforms of velocity sensed a t  two positions, separated in space by distance 
r, were multiplied together, i.e. 

.Z i (W, Y) .Zj*(w, Y + r), 
to  form complex numbers, which were then averaged over a number of realiza- 
tions, to produce 

Zi(w, y) Zj*(w, y + r) dw. 

This quantity can be shown to equal the transform of the velocity covariance 

Wij(t, y, r) exp ( - iwt) dt. 

(See e.g. Lumley & Panofsky 1964.) Here, 

Wij(t,y,r) = ui(t ' ,y)~j(t '+t ,y + r ) ;  

and we are prepared to assumeWi, is stationary in time. When r = 0, this spectral 
product reduces to the usual autospectrum, i.e. 

Qij(w, y) = Z&(,J, y) ZT(w, y) dw. 

Since Wij(t, y, r) is real, the real part of Zi(w,  y) Z?(w, y + r) dw is even in w ,  and 
the imaginary part is odd. In  order to perform spatial transformations, a co- 
efficient was calculated from the spectral coefficients, i.e. 

Repeated subscripts do not imply summation in this paper. This filtered space 
correlation, which appears to have been first considered by Wills (1964), is 
bounded by i 1. 

t Z , ( o )  does not in general have derivatives. \ 
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Wavenumber transformations of the above coefficient were made numerically, 
e.g. 

If we assume C, is even in r ,  and that the flow field is homogeneous in spectral 
bands (i.e. Z j ( w ,  y) ZT(w,  y) is independent of y), the above transform is equiva- 
lent to the more usual definition of spectra 

4 j ( E l , @ )  = (&) 2 m  

a ( t ,  y, r,) exp [ i (klr ,  - wt)] dt dr,. 

Since the real part of Z&w, y) Zj*(w, y + r) dw is even in w, and the imaginary part 
odd in w ,  it follows from (2) that C, also has this property, and from (3) that 

A i j  (Em, W )  = A i j (  - Em, - w ) .  

In  a two-dimensional mixing layer, the above two assumptions are true for 
separations in the direction where the properties are uniform, but they must be 
treated cautiously for streamwise separations (and also for lateral directions, 
not considered in this paper). We assumed that Cij(w, y, r) is invariant to reflexion 
about the r axis, and that Qjj is invariant to translation (over regions about y 
where Cij(w, y, r) is not zero). For streamwise displacements, a , ( w ,  y) varies 
appreciably, since it scales on the distance downstream: but fortunately the 
value Q j j  (w ,  y), which must be equated to Qjj (w,  y + r) for the usual definition of 
a spectrum, does represent something like the mean value of Q j j ( w ,  y + r) over 
both positive and negative values of displacement. The errors induced by the 
above assumptions will be most pronounced for the low-frequency low-wave- 
number portion of the spectra, where the integrationextends to larger separations. 

We have available at least two options in actually transforming the C, func- 
tions in (3). We can transform the actual estimates of C, that were computed for 
a finite number of r displacements, or we can fit a curve to Cij and transform 
this continuous function. The latter approach allows us to make an estimate of 
the spectrum at low wavenumbers which, although only as good as our curve- 
fitting model extrapolated beyond the data, does provide some estimate of the 
spectrum at low wavenumbers. This approach was adopted here. 

The function chosen to fit the modulus of the complex Cij was 

lCij(rl,U)l = ICijCO, @)I exp - (alrlln), (4) 

while the phase angle of Cii(rr, w ) ,  i.e. 
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F I G ~ E  2. The mean velocity profile and the sheer stress profile calculated from the velo- 
city profile, reproduced from Wygnanski & Fiedler (1970). ___ , shear stress. 
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The degree of success of fitting the measured C, by a four-parameter curve, a, b, 
c,  rt, is shown in later sections. In  the actual fitting routine, once the coherence of 
the data dropped below 4 % (i.e. IC,l < 0-2) twice, C&, o) was considered to be 
of low statistical reliability, and ignored. 

4. Results 
4.1. Exit conditions 

The trip wire on the upstream wall of the mixing layer produced a turbulent 
boundary layer with a displacement thickness of 0.8 cm. The typical free-stream 
turbulence level at the exit plane was less than 0.3 % for both the lateral (</Uo) 
and the longitudinal fluctuations. 

Wygnanski & Fiedler (1970) measured many of the properties of this self- 
preserving mixing layer, and we have reproduced their mean velocity profiles 
in figure 2. The present mixing layer spreads more rapidly than that of the round 
jet studied by Bradshaw, Ferriss & Johnson (1964), with which frequent com- 
parisons are made, and the two-dimensional mixing layer of Liepmann & Laufer 
(1947). In  the case of two-dimensional mixing layers, the changed rate of spread 
was attributed by Batt, Kubota & Laufer (1970) to the differential initial 
conditions. 

4.2. Longitudinal velocity spectra 

The conventional frequency spectrum of the longitudinal velocity fluctuations is 
defined as 

q L ( w )  = 2UOZl(w,Y)z:(w,y)dw. 
Y l G  
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FIGURE 3. The frequency spectrum of the longitudinal velocity fluctuations (---.-) com- 
pared with Bradshaw et al. (----), together with the spectrum of the lateral velocity 
fluctuations (- ) . y , = 2 7 c m , U o =  12ms-l,7y-0.075. 

This spectrum is real, as is any complex number multiplied by its conjugate, and 
is even in w ,  since 

Z," (W)  = Z,( -0) 

from the definition of (1). The factor 2Uo/ylq is introduced to give #,,(w) the 
property 

The spectrum on the high-speed side of the mixing layer, 27 ern downstream of the 
virtual origin, is shown in figure 3 and compared with the results obtained by 
Bradshaw et al. (1964) in a round jet. The values of 7 are defined as in $2, for all 
results. 

Since the widths of the mixing layers are different at  the same y,, it  is not sur- 
prising that thenon-dimensional frequencywy,/U,is not agood scaling parameter. 
A better collapse of the data from the two different experiments would have been 
achieved by using some characteristic local width of the mixing layer in place of 
y,, possibly like that proposed by Jones (1968). 

As well as the usual autospectrum, we measured, on the high-velocity side 
of the mixing layer, the spectral product Z,(w, y) 2; ( w ,  y +r,)  dw, and formed 
the filtered correlation Cll(w, rl) of (2), which is presented in figure 4 as the modu- 
Ius of Cll(w, rl) and the phase angle The modulus of C,, (a, rl) is the square 
root of the coherence and bounded by 1 and 0. The coefficient at the origin (i.e. 
Cll(o, 0)) is unity, and there is no inherent difficulty fitting the modulus of C,, 
with the function exp ( - ar;) of (4) by a least-squares technique. The fitted curve 

18-2 
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FIUURE 4. Filtered correlations of longitudinal velocity fluctuations, showing the square 
root of coherence and the phase angle. +, data; -, fitted function. yl = 27cm. 
U,  = 12ms-1. wyl/Uo: (a) 3; ( b )  7. 

is shown as a solid line in figure 4. Since the turbulence is convected in the rl 
direction by the mean velocity, the signal at rl lags the signal at rl = 0, so that 
the phase angle, as defined in (5) ,  becomes increasingly positive with rl. The 
phase angle is only defined 2 2n; thus, the computer program has added the 
appropriate number of cycles, in order to fit B,,(o) with the function c + br,. The 
fitting was accomplished by a least-squares technique, which weighted the data 
near rl = 0 in order to  determine c, before fitting all the data for values of rl less 
than the separation at which the coherency had dropped below 4 % at two pre- 
vious positions. Since Cl1(w, r )  at r = 0 is real, the phase angle at r = 0 must be 
zero and in turn c = 0. 

Thus the coefficient C,, was fitted by exp ( - ary) exp (ibr,), assumed even in 
rl, assumed homogeneous in spectral bands, then transformed to produce an 
approximation to the spectrum M,,(k,, w )  defined in the appendix. 

We made no test of the evenness of Cll(w, r,); but it does reach its maximum 
value of unity at the origin. The modulus of C,, most likely decays more rapidly in 
the - rl direction where, because of lack of homogeneity, characteristic scales of 
the turbulence are smaller. 

A number of complex transforms of Cl l (~ ,r , )  at constant w are shown in 
figure 5 ;  and these are analogous to the Fourier cosine transform presented by 
Wills (1964), except that we present spectral densities of only positive wave- 
numbers, rather than the sum of both positive and negative. These curves have 

they are A l l ( k l , ~ )  of (3), multiplied by 2UJy2,Z. Contours of equal Mll (k , ,w)  
have been drawn in figure 6 ;  they show the concentration of energy along a line 
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FIGURE 5. Wavenumber frequency spectfa of velocity fluctuations a t  
y1 = 27om, 7 = -0-075, U, = 12ms-l. 

approximately wy,/Uo = 0-72 k, y,, signifying convection in the downstream 
direction. The extrapolation from the data by the fitted curve provides the in- 
formation from which the spectrum at zero wavenumber is calculated. 

The spectrum in figure 6 can be compared with Will's wavenumber frequency 
spectrum in a round jet, published by Bradshaw & Ferriss ( f  965). The frequency 
spectrum in this round jet is less sharply peaked than the present mixing layer. 
(See figure 3.) Hence it is not surprising that Wills' El, w spectrum also has a 
weaker peak. The present contours are less elongated along the k,, w convection 
line, although the peak does occur at the same value of wlk, (i.e. 0-72 Uo). 

Filtered correlations with displacements in the r3 direction were measured, 
and fitted with (6). As in the previous case, c must be zero; but now we find 
that frequency components are in phase for displacements in the r3 direction (as 
long as there is significant coherence), leading to a value of b close to zero. The k3 
transform becomes 

To the extent that the flow is exactly two-dimensional, quantities are homo- 
geneous and even in r3, so that (7) is exactly equal to Nll(k3, w )  defined in table 1. 
Mil(k3, w )  spectral densities are shown in figure 7 for positive values of k, only, 
because they are symmetrical in k3. The filtered correlations showed no tendency 
to have negative loops, so the maximum value of the spectrum occurs at k, = 0, 
rather than at  some positive value as in the k,, w spectrum. 

For frequencies above and below wy,/Uo = 4, the constant-frequency spectra 
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FIUIJRE 6. Contours of wavenumber frequency spectra Mll(kl, a) ~ - 1 0 ~  at  
y1 = 27cm, 7 = -0.075, U, = 12ms-l. 
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FIGURE 7. Wavenumber frequency spectre, of velocity fluctuations at 
y1 = 27 cm, 7 = - 0.075, u, = 12 ms-l. 
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in figure 7 have greater concentrations of energy at high wavenumbers than the 
more sharply peaked spectrum a t  wy,/U, = 4. This implies that the eddies of the 
highest and lowest frequencies are of smaller lateral extent than those of inter- 
mediate frequencies. This strikes the author as peculiar; and it was not observed 
in e.g. the k,, w spectrum, for the pressure fluctuations beneath a turbulent 
boundary layer, presented by Wills (1971). None of the filtered correlations 
Cll(w, r,) exhibit significant coherence at values of r3 greater than the width (in 
the y2 direction) of the mixing layer. 

The two spectra discussed above were functions of two dimensions: frequency, 
and a wavenumber in the direction of one of the co-ordinate axes. In  order to 
compute in a similar manner a three-dimensional spectrum, say i@,,(k,, k,, w ) ,  it  
would be necessary to make measurements a t  a large number of displacements in 
the r,, r3 plane. While this is possible, it  would be convenient to construct the 
three-dimensional spectrum from the simpler M,,(k,, w )  and Mll(k3, w )  spectra, 
reducing the number of measurements involved. 

The filtered correlation with displacement,s in two directions, e,,(r,, r,, w ) ,  was 
assumed separable with respect to rl and r,, i.e. 

ell(rl, r3> = C1l(rl> w, c11(r3, (8) 

This separation was suggested by Jones (1969), for use in evaluating Lighthill's 
aerodynamic noise integral. From (8) and the definitions in table 1, it follows that 

all(kl) k3, w ,  = Mll(kl) w)M11(k3, w ) / $ ( w ) ;  (9) 

and the spectrum of (9) reduces exactly to the simpler two-dimensional spectrum, 
e.g. 

m 

M11(k33, @) 1 i@ll(kl> k: w ,  dklyl* 
-aJ 

In the space-time domain, the separation in (8) is equivalent to a convolution 
(with respect to time) of the Fourier transforms of Cll(rl, w )  and C,,(r3, w).  

The separation used in (8) is equivalent to assuming that the distribution of 
energy in the k, wavenumber for each k, is the same as that of the distribution 
integrated over all k, (i.e. Mll(k3,w).  Wills (1971) discussed the separation of 
wavenumber frequency spectra for the pressure fluctuations beneath a turbulent 
boundary layer. He chose a somewhat analogous separation; but, because he 
wanted a two-dimensional spectrum in terms of k, and k,, he integrated over w .  

The &,,(k,, k,, w )  spectra is shown for a fixed value of frequency in figure 8, 
while it is shown for a higher frequency in figure 9, for only positive values of k, 
(since it is symmetrical). The contours in these two figures are elliptical and, 
because they encompass a narrow band of frequencies, the contours are centred 
on a value of k, that is set by the convection of these frequencies past a fixed 
observer. 

The separation of filtered correlations in (8) used to obtain the three-dimen- 
sional spectrum leads to exact two-dimensional spectra along the wavenumber 
axes. It is desirable to test how well the three-dimensional spectrum reduces to 
a two-dimensional spectrum for wavenumbers not on the axes. 
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FIGURE 8. Contours of wavenumber frequency spectrum of velocity fluctuations MI, 
(k, ,  k,, o) x lo4 a t  a constant frequency y1 = 27 cm, 7 = - 0.075, Uo = 12 m s-l. oyl/uo = 5. 
This spectrum computed using separation assumption. 
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FIGURE 9. Contours of wavenumber frequency spectrum of velocity fluctuations M,, 
(k,, k,, o) x 104 a t  a constant frequency. Spectrum is symmetrical about k, = 0, y1 = 27 cm, 
q = -0-075, Uo = 12ms-1 wyl/Uo = 10. This spectrum computed using separation 
assumption. 
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A spectrum that is a function of K,, being a wavenumber in the k,, k, plane, is 
obtained from Mll(kl, k,, w )  by integrating in a direction perpendicular to K,. 

The steps involved can be seen by considering the inverse transformation, 

-m 

W,(t, y + r’) = /om/ 4 j ( y ,  k’, w )  exp [ - i(kr’ - ot )]  dwdk .  (10) 
--m 

r’ and k are two-dimensional vectors. Let I’ be a displacement at angle a to the 
rl axis, and K, and K, are defined below, i.e. 

rl = I? cosa, k, = K, C O S ~ ,  k, = k3sina, 

r3 = r s ina ,  k, = ~ , s i n a ,  k, = ~ , c o s a .  

Then substitution in (10) leads to 

~ ~ ~ c t ,  Y, r, a) = S_”mS_”-m/om4j(y,k,,k2,0) exp-i(qr-wt) ~ o s ~ a d w d ~ , d ~ , .  

The transform of both sides of this expression leads to 

The integral on the right-hand side of (1 1) is ourdehition of the two-dimensional 
spectrum M,j(y, K,, w ) .  Thus, M,,(y, K,, w )  was computed from the &(y, k,, k,, w )  
spectrum using (1 I). The results are shown in figures 10 and 11 for a = tan-10.2; 
they are normalized so that 

Also shown in figure I0 is Mll(y, K: ,  w ) ,  calculated from directly measured values 
of C,, at a number of values of r. As before, the filtered correlations are fitted by 
(6 ) ,  then transformed. 

The computed three-dimensional spectrum reduces to a two-dimensional spec- 
trum that is only order three quarters of the measured spectrum, although the 
peak in the energy occurs at the same frequency. While this obviously reflects 
the failure of the simplifying separation assumption of (8), the correspondence 
between the measured and computed spectra is heartening; it suggests that the 
separation with respect to wavenumbers may be an acceptable procedure for 
approximate calculations. Evaluation of a structure constant in $5 is one such 
calculation. 

4.3. Lateral velocity spectra 
The lateral fluctuations of velocity across the mean velocity gradient play a role 
in the maintenance of shear stress, so we have measured, on the high-velocity 
side of the mixing layer, the spectrum of these fluctuations a t  the same position 
as the previous longitudinal velocity spectra. The conventional autospectrum, 
shown in figure 3, exhibits the characteristic peak observed by Bradshaw et al. 
(1964) on the inner edge of their mixing layer. Contours of M2,(k1, w )  are shown in 
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M,,(k,, k,, o) spectrum. K~ = k,cosu+k,sina, y1 = 27 cm, ?,I = -0.075, U, = 12ms-1. 
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FIGURE 12. Contours of the wavenumbers frequency spectrum of lateral velocity 

fluctuations M,, ( k , , o )  x lo3. y1 = 27om, 7 = -0.075, U, = 12ms-l. 

figure 12, and they exhibit a sharp peak centred at oy,/U, = 5 and klyl  = 8, 
higher values than those for the peak in the Mll(kl, w )  spectrum. 

The spectrum for the lateral wavenumber M2,(k3, w )  shown in figure 13 has 
a markedly greater proportion of its energy in high wavenumbers than the 
MI, (k3,  w )  spectrum. Bradshaw et al. (1964) observed that the correlation of u2 
fluctuations with lateral displacements (i.e. r3)  was greater than the correlation 
of u1 fluctuations, and this is consistent with observed filtered correlations that 
were used to generate the wavenumber frequency spectra. These two spectra of 
lateral fluctuations are used in $5 to evaluate the structure constant proposed 
by Phillips (1969). 

4.4. Shear stress 

The mean shear stress is central to a turbulent shear flow, as it both diffuses 
momentum and contributes to the generation of turbulence. Its profile in the 
mixing layer has been reproduced from Wygnanski & Fiedler (1970) in figure 3. 
The mean shear stress is related to the product of Zl(w) and Z,(o) by 

The imaginary part of Q,.,(w,y), unlike the imaginary parts of QI1(w,y) or 
R,,(w, y ) ,  is not necessarily zero, although, when it is integrated over all w ,  
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FIGURE 13. Lateral velocity spectra M,,(k,, w )  at constant frequency. 
y1 = 27cm, 71 = 0.075, U,- 12rnr1. 

the resultant integral must equal zero (because Tz is real). We shall call the 
real part of the SZ,,(w, y) spectrum (D12(w), when i t  is normalized so that 

This co-spectrum has been measured at a number of positions on the high- 
velocity side of the mixing layer, and is shown in figure 14. All spectra exhibit 
a sharp peak near wyJU, = 5, with the lateral gradient of uii ,  in figure 3 coming 
from a more or less uniform increase in all frequencies. The cD,,(o) spectrum 
gives an indication of the characteristic frequency of the turbulent energy pro- 
duction, because ui i z  aU/ay, is the dominant production term in the energy 
equation. (Cf. Wygnanski & Fiedler 1970.) The fitted coefficient C,,(w, y) has a 
real part, which depicts those components that contribute to the shear stress, 
and an imaginary part, which describes those components of the lateral and 
longitudinal velocity fluctuations that are coherent but 90 degrees out of phase. 
As we noted in 9 3, the real part of Cii(w, y, 0) is even in w ,  so we have presented 
C12(w, y, 0 )  in figure 16 for positive values of w only. Here the shear stress coeffi- 
cient at a number of positions across the mixing layer is compared with the 
measurements of Bradshaw et al. (1964). In  the two-dimensional mixing layer the 
coefficients, while having the same maximum value, appear to be smaller at  
higher frequencies than do the coefficients for the round jet.. This is similar to the 
difference between the spectra of the u1 and u, fluctuations in the two flows. 

The modulus of C,, (w, y, 0) ,  which is equal to the square root of the coherence 
of frequency components of u, and u,, varies less than the shear stress coefficient 
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FIGURE 15. Shear stress coefficient, which is the real part of C,, (0, y, 0), at a number of 
positions across the mixing layer. y, = 27 cm, U, = 12ms-l. ----, Bradshaw et ul. (1964). 

across the mixing layer (i.e. there is more order in the velocity fluctuations than 
the simple shear stress coefficient indicates). This is particularly true near the 
edges of the flow, where u1 and u2 components are quite coherent, but make a 
small contribution to the shear stress because the phase angle 8,,(0) in figure 16 
shows they are nearly in quadrature. 
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In  order to compute the wavenumber frequency spectrum, the filtered correla- 
tion C12(w, y, rl) was measured for separations in the downstream direction. These 
filtered correlations show clearly that they do not, in general, reach a maximum 
at rl = 0, but rather at some positive value of rl, where the phase angles are close 
to zero. The modulus of C12(w,y,rl), on the other hand, does appear to have a 
maximum at r, = 0 (at least for positive r,). For this reason, the advantage of 
fitting the filtered correlation with the form of (6) is evident, since the modulus of 
C12(w, y, rl) can be assumed symmetrical in rl without assuming the real part 
of the correlation to be symmetrical in rl. The assumption of symmetry is stiU 
in error, to the extent that the characteristic scales increase with yl. 

The wavenumber transform calculated from the filtered correlation C,, 
(w, y, r) is in general complex, because the phase angle of the correlation is non- 
zero at r = 0. It follows from our fitting function of (6) that, for a, phase angle 
a t  r, = 0 of O12(w, o), 

Re Pf12(kl, w)1 = iJf12(kl, w>1 cos~&, 01, 

Im [Jf12(k,, w)l = lN12(kl, w)l  sinO,,(w, 0). 

The phase angles are available in figure 16, while the modulus of 1M,,(k,,w) is 
plotted in figures 17 and 18 for two positions on the high-velocity side of the 
mixing layer. The modulus of M,,(k,, w )  is of course real, and it has the property 

l J f l 2 ( W J ) l  = I J f l Z ( - - J L  -41, 
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MIB (kl, w )  x lo3 at q = -0.075, y1 = 27cm, U, = 12ms-l .  
FIGURE 17. Contours of the modulus of the wavenumber frequency spectrum 
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FIGURE 18. Contours of the modulus of the wavenumber frequency spectrum 
MIB (k,,o) x lo3 at q = -0-046, yl = 27cm, V, = 12ms-l .  
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since ~Cl2(w,y,rl)~ is even. Thus, the spectra are presented only for positive 
frequencies, and they are normalized so that 

The modulus of MI2(k1, w )  does not have the above property, but Re [M,,(k,, w ) ]  
does integrate to unity. 

The 1Ml2(k,,w)\ spectrum at 7 = -0.075 is quite similar to the N,,(k,,w) 
spectrum at the same position, which is shown in figure 12. The convection velo- 
citiesdeducedfrom the M12, M,, and M,, spectra are allabout 0-75of the local mean 
velocity. The convection velocities near the peak in the spectrum at 7 = - 0-046 
are slightly less than those at = -0.075, and the energy is more widely dis- 
tributed at  higher frequencies. These two spectra are used in 9 5 to compute the 
lateral gradient of M12(kl, w ) .  

5. The maintenance of shear stress 
Phillips (1967, 1969) suggested that in turbulent shear flows the Reynolds 

stress results from the direct interaction of the lateral turbulent fluctuations 
with the mean velocity gradient. The shear stress gradient across the flow is 
brought about by lateral fluctuations close to the point where their convection 
speed equals the local mean velocity. The increment of shear stress between yz 
and y, + Sy, must have the same convection velocity as the lateral fluctuations 
at the matched layer (i.e. the local mean velocity between y, and yz + Sy2). 

In  order to test this requirement of the Phillips model we have calculated 
the difference between the modulus of the two shear stress spectra at 7 = - 0.075 
and 7 = - 0.046 in figures 17 and 18. The resultant spectrum is shown in figure 22; 
it has been normalized so that 

The region in k,, w space that corresponds to convection velocities between the 
mean velocity at 7 = - 0.075 and 7 = - 0.046 is shown shaded in figure 19. The 
spectrum required is actually the gradient of the real part of M12(k1, w ) ,  but the 
difference between this quantity and that in figure 19 is small, as can be seen by 
examining the phase angles shown in figure 16. 

Most of the change in shear stress indicated in figure 19 has a convection velo- 
city below that of the local mean. The convection velocity of alay2 U Z  is closer 
to the convection velocity of the most energetic components of u1 and u2 than 
to the local mean speed. It appears from figure 19 that the matched layer con- 
tributes something less than a quarter of the total shear stress gradient in this 
region of the mixing layer. Most of the shear stress increment in figure 19 is 
travelling at speeds below the local mean where lateral fluctuations induce vor- 
ticity fluctuations which, Phillips argues, should be nearly in quadrature with 
the lateral fluctuations. The present result suggests that the correlation between 
the vorticity and lateral velocity away from the matched layer is large enough 



The maintenance of turbulent shear stress i n  a mixing layer 289 

0 1 I 
5 I0 

Wavenumber, k ,  y1 

FIGURE 19. Contours of wavenumber frequency spectrum of the shear stress 
gradient. g = -0.075, y1 = 27cm, U,, = 12ms-l. 

that, when i t  is applied to the most energetic components of the lateral velocity, 
it is these components that dominate the stress gradient. 

This correlation coefficient is a complex function of the local turbulence field, 
since its introduction is a device to avoid solving the equations governing the 
interaction of the perturbation velocity with the turbulent stresses. Miles (1967) 
points out that this equation cannot be solved without ad hoc assumptions about 
the relationship between vorticity fluctuations and Reynolds stress. 

With the present data we are able to evaluate the shear stress predicted by 
Phillips on the basis of this matched layer model. In  the present notation, 
Phillips' (1969, (4.7)) expression for lateral shear gradient is 

Here the frequency w, of the wavenumber component k, travelling at the local 
mean U is 

0, = Uk,. 

A structure constant may be defined as 

and a time scale as 
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7 = -0.075, y1 = 27cm, U,, = 12ms-l. 

Expression (1 7) contains a factor of 277 omitted by Phillips. This gives 

on substitution into Phillips (1969, (4.7)). 
If 2/30,, is a weak function of y2,  (18) can be integrated to give 

The term GpO,, has the form of an eddy viscosity, which was found to be 
reasonably constant across the mixing layer by Wygnanski & Fiedler (1970). 

The structure constant ,8 has been evaluated from the appropriate measure- 
ments at 7 = - 0.075, using the assumption that the three-dimensional spectrum 
can be constructed from the measured two-dimensional spectrum, as in (9). 
Under this separation, the structure constant becomes 

The inner integral, which we shall write as 

was evaluated from the results in figure 13 and is shown in figure 20. Using the 
M2,(kl, w )  spectrum of figure 12, ,8 was calculated to be 1.0. 

If the M2,(kl, w,) spectrum was concentrated at Ic3 = 0 so that k:/(k; +hi )  could 
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- - 
UI u2 - UQ - 0 2 2  u, aY2 Y1 v: 

Y1 -- P 4 
uz, 
- 

equation (19) measured 
0.0072 0.0156 1.0 4.0 0.07 0.0044 

TABLE 1. Properties of mixing layer, 71 = - 0-075 

be approximated by unity, P(w,) would also be unity, and /3 would equal 2. Since 
the wavenumber spectrum has a peak in the k, direction (equivalent to the 
observation that the space correlation in the downstream direction has a 
negative loop), and P(w& is order one half at this value of k,, the structure 
function is order unity. 

The other parameter in (19) is the time constant 02, defined by (17), which, as 
Phillips (1967) pointed out, is equal to the integral time scale in a frame of refer- 
ence moving with velocity U .  It is not in general equal to the time scale deter- 
mined in a frame reference moving at  such a speed as to optimize the time scale. 
This optimizing frame of reference was used by Davies, Fisher & Barratt (1963), 
Wygnanski & Fiedler (1970) and others to calculate the analogous longitudinal 
velocity time scale. Davies et al. (1963) found this optimum time scale to be 4.5 
(aU/ay,)-l, where aU/ay, is the local mean velocity gradient. Wygnanski & 
Fiedler (1970) did not find the same dependence on mean velocity gradient, but 
that at 7 = - 0.075 the optimum longitudinal velocity time scale was @37y,/uO. 
For the lateral velocity using the M,,(k,, w )  spectrum in figure 12, the optimum 
time scale is 0.33 y,/Uo at 7 = -0.075, while the time scale defined in (17), 
OZ2, is o*o7y1/u,. This time scale, in a frame of reference moving a t  the local 
mean, is obtained by performing the integration along the line w/k  = 0*85U, 
where inspection of figure 12 shows there is much reduced spectral energy. 

The measured values of the quantities necessary to evaluate (19) are either 
described above or available in Wygnanski & Fiedler (1970) and they are listed 
in table 1. These values of turbulent intensity, etc., when substituted into (19), 
account for 60 % of the measured shear stress, but overestimate the fraction of 
the increment that occurs at the matched layer. This underestimation of the stress 
by the direct-interaction model, in the light of the errors introduced by separa- 
tion of variables, is not very significant by itself. It is interesting, however, to 
compare this result with the observation of Miles (1967), that the stress supported 
at the critical layer in the atmosphere over ocean waves appears to be inade- 
quate to explain the growth of much of the ocean wave energy. 

Another approach, that leads to some small insight into the problem of shear 
stress maintenance away from the matched layer, is to transform the inviscid 
momentum equation into Fourier space, and multiply it by the Fourier com- 
ponent of the lateral velocity fluctuations. For an idealized mixing layer with 
only one mean velocity U, = V, and one mean velocity gradient aU/ay,, conserva- 
tion of momentum leads to 

au au a aP 
at aY1 k aYk aYi 

%+a -+ u A + p - -  (U1Wk)' = --. 
19-2 
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p is the fluctuating pressure, and (ui,uj)' the fluctuating stress. A Fourier trans- 
form into wavenumber frequency components of (20) for i = 1, in the manner of 
the inverse of 

exp ( + iwt - ik, y,) Zi(k, ,  w ,  y) dwdk,, 
-a 

8U a a an 
aY, 8YZ aY3 aY1 

leads to iwZ, - ik, 772, + 2, - - iE,Zll + - Z,, + - Z13+- = 0. 

IT(k,,o) is the transform of the pressure term, and Z l k  is the transform of the 
fluctuating stress (uluk)'. If we multiply this expression by Z,*, we obtain 

generation nonlinear 
term 

pressure and remaining nonlinear terms 

On multiplying (21) by dk,dw and ensemble-averaging it, we finally obtain 

= 0. (22) 
pressure and remaining 
nonlinear terms 

The shear stress spectrum Mlz(kl, w )  is predominantly real. (The phase angles 
in figure 16 are small, except near the edges of the mixing layer.) Thus, the first 
term in (22), ik,(o/k,  - U )  Mlz, is largely imaginary. TheM,,(k,, o) spectrum in the 
generation term is real and so, away from the matched layer (i.e. w/k ,  not equal to 
U ) ,  the generation term cannot contribute directly to the real part of the shear 
stress spectrum. The imaginary part of the shear stress spectrum, while not zero, 
does not contribute to the shear stress. The real part of the shear stress spectrum 
for components travelling at velocities other than U results from the transfer of 
energy from the generation term to the nonlinear and pressure terms. These latter 
terms are, in general, complex and so can act as a coupling mechanism to drive 
Z, components in phase with the 2, components extracting energy from the mean 
flow. 

In  figure 21 we have plotted the real and imaginary terms in (22) for one fre- 
quency as measured at 7 = -0.075. The pressure and remaining nonlinear 
(triple product) terms in (22) were obtained by the difference between the first 
three terms. At the matched layer for this frequency, i.e. near a wavenumber of 
kly, = 5.9, the production term has dropped to a small fraction of its maximum 
value. It should be noted that (22) neglects any terms that result from the spread- 
ing of the mixing layer. 

If the gradient of the real part of Mlz(kl,  w )  was to be zero away from the 
matched layer, then the gradients of the imaginary part of the nonlinear and 
pressure terms would have to be zero and the gradients of the generation term 
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FIGURE 21. Terms in the transformed momentum equation (22) for a fixed 

frequency. 71 = - 0.075, y1 = 27 cm, U, = 12 m s-l. 

would have to be balanced by the real part of the pressure and nonlinear terms. 
The one nonlinear term that was measured, ikM,,,,, has a substantial imaginary 
part and it is not unreasonable to expect significant lateral gradients in this and 
the other nonlinear terms. More extensive measurements would be required to 
prove this point but it does seem likely that the gradients in the nonlinear terms 
support the observed gradient of shear stress away from the matched layer. 
Terms such as the triple products of velocities are neglected in Phillips' model of 
direct interaction of lateral fluctuation with the mean velocity. 

6. Conclusions 
By assuming homogeneity of the lateral and longitudinal velocity fluctuations 

in a mixing layer, the two-dimensional cross spectrum was measured, and its 
lateral gradient on the high velocity side of the mixing layer was used to show that 
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the major portion of the increment in shear stress occurs away from the matched 
layer. 

Phillips' direct-interaction model, when evaluated from the three-dimensional 
spectrum under the same assumption of homogeneity, together with the assump- 
tion that it can be adequately described by the separation of variables used in this 
paper, gave a value equal to about 60% of the total shear stress at 7 = - 0,075. 

The evaluation assumed that the coefficient between lateral fluctuations and 
vorticity at the matched layer was T, the value in laminar flow. If this coefficient 
was somewhat reduced for the present turbulent flow, the predicted shear stress 
increment at the matched layer could be made to agree adequately with that 
observed in figure 19. 

Fluctuations travelling at other than the local mean appear to be able to 
support significant shear stress gradients, and it is the nonlinear terms in the 
momentum equation that play an important role in correlating the lateral and 
longitudinal fluctuations in a manner that contributes to the shear stress. 

Thus it appears that, in the mixing layer, direct-interaction models between 
mean flow and lateral fluctuations are not very successful. Possibly in flows with 
lower turbulence intensities (at 7 = - 0.075 the r.m.s. turbulence level was 0.16 
of the local mean), the nonlinear terms are less important. However, one is not 
encouraged by the lack of success in predicting ocean-wave generation by means 
of critical layer models. 

The computation of spectra and the digitization of the data relied heavily on 
the techniques developed by Dr Y.H.Pao, and the results presented were 
dependent on specific computer programs written by Mr S. D. Hansen. 

Appendix. Definition of some spectral transforms 

Here we assume harnageneity in y and 7, 

Rij(O, t )  exp ( - iwtdt) ,  

&(w)  exp ( iwt )  dWY1 - 
uo ' 

Note: no summation on repeated indices. 
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